

ELIZADE UNIVERSITY

ILARA - MOKIN

NIGERIA

FACULTY OF BASIC AND APPLIED SCIENCES DEPARTMENT OF PHYSICAL AND CHEMICAL SCIENCES 2019/2020 ACADEMIC SESSION: FIRST SEMESTER EXAMINATIONS

COURSE TITLE: EXPERIMENTAL CHEMISTRY III Time: 3 Hrs

COURSE CODE: CHM 391

Instruction: Attempt ONE question only

QUESTION ONE

You are provided with 4.85 g of orange juice, 2.040×10^{-3} M sodium thiosulfate, 200 mL of I₂ solution, vitex (starch) reagent and 0.2 M acetic acid. [Take A.wt of C = 12.01, H =1.00, O= 16]

A.	State the procedure for the standardization of I2 against sodium thiosulfate	[5 Marks]	
B.	Write a balanced chemical equation for the standardization of I ₂ against sodiu	tion for the standardization of I2 against sodium thiosulfate	
2.		[2 Marks]	

C. Determine the average volume of iodine used from your concordant titres [5 Marks]

D. Calculate the concentration of your I₂ solution [5 Marks]

E. Outline the procedure for the vitamin C determination from orange juice [5 Marks]

F. Determine the average volume of iodine used from your concordant titres [4 Marks]

G. Write a balanced chemical equation for the determination of ascorbic acid against I₂

[2 Marks]

H. Calculate the mass of vitamin C in mg per g of fruit or mg per mL of fruit juice

[6 Marks]

I. Name the product of oxidation of ascorbic acid when exposed to air or light

[1 Mark]

J. Draw the structure of ascorbic acid

[2 Marks]

K. Explain how vitamin C acts as an antioxidant in biological system. [3 Marks]

QUESTION TWO [40 MARKS]

You are provided with unknown concentration of glucose labeled sample A, glucose crystals, 1 M sulphuric acid and 0.01 M potassium manganate (VII).

- A. State the procedure for the estimation of an unknown glucose concentration in a solution using colour based method.

 [10 Marks]
- B. Describe how you would prepare 10%, 8%, 6%, 4%, and 2% glucose solution from glucose crystal.

[5 Marks]

	[]	
C.	Determine the time taken for the loss of colour from a solution of potassium manganate	
	(VII) upon the addition of different concentration of glucose solution.	[5 Marks]
D.	Write out the equation of the reaction	[3 Marks]
E.	Plot the graph of glucose concentration against time	[5 Marks]
F.	From your graph, intrapolate the glucose concentration in sample A	[5 Marks]
	Draw the structure of glucose Discuss the significance of glucose in human body	[2 Marks] [3 Marks]
I.	How does potassium permanganate and sulphuric acid oxidize glucose?	[2 Marks]